PREDICTIVE LAW — HUQUQIY NATIJALARNI OLDINDAN BASHORAT QILISH TIZIMLARI
Keywords:
Predictive law, huquqiy tahlil, machine learning, malumotga asoslangan adolat, huquqiy bashorat, algoritm, inson-algoritm hamkorligi, algaritmik tarafkashlik, huquqiy risklar, pragnozlash, konseptulAbstract
ushbu maqola Predictive Law – huquqiy natijalarni oldindan bashorat qilish tizimlarining konseptual va amaliy jihatlarini tahlil qiladi. Tadqiqot maqsadi – zamonaviy huquqiy texnologiyalar orqali sud qarorlari va huquqiy natijalarni oldindan prognozlash imkoniyatlarini aniqlash va baholashdir. Maqola IMRAD uslubida tuzilgan: kirish qismida Predictive Law tushunchasi va tizimlarning rivojlanishi yoritilgan; metod bo‘limida tizimlarni tahlil qilish, solishtirma va empirik yondashuvlar tavsiflangan, natijalar bo‘limida tizimlarning aniqligi, samaradorligi, tezkorligi va huquqiy risklarni kamaytirish imkoniyatlari ko‘rsatildi, muhokama bo‘limida natijalarning huquqiy, etik va ijtimoiy oqibatlari, inson omili va algoritmik tarafkashlik masalalari tahlil qilindi; xulosa bo‘limida Predictive Law tizimlarining kelajak huquqi va inson-algoritm hamkorligidagi roli umumlashtirildi.
Tadqiqot natijalari shuni ko‘rsatadiki, Predictive Law tizimlari aniqlik, izchillik va samaradorlikni oshirish bilan birga, inson nazorati va axloqiy me’yorlarni talab qiladi. Ushbu tizimlar huquqshunoslikni empirik va texnologik asosda rivojlantirish, sud va korporativ qaror qabul qilish jarayonlarini optimallashtirishda muhim vosita sifatida xizmat qiladi.
References
1. Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D., & Lampos, V. (2016). Predicting judicial decisions of the European Court of Human Rights: A Natural Language Processing perspective. PeerJ Computer Science, 2, e93.
2. Ashley, K. D., & Bommarito, M. J. (2018). Predicting the Law: Artificial Intelligence and the Future of Legal Analytics. Harvard Journal of Law & Technology, 31(2), 509–552.
3. IBM LegalTech Lab Report (2024). Predictive Analytics in Legal Practice. IBM Research Publications.
4. Katz, D. M., Bommarito, M. J., & Blackman, J. (2014). Predicting the Behavior of the Supreme Court of the United States: A General Approach. arXiv preprint arXiv:1407.6333.
5. Katz, D. M., Bommarito, M. J., & Blackman, J. (2017). A General Approach for Predicting the Behavior of the Supreme Court of the United States. PLOS ONE, 12(4), e0174698.
6. Lex Machina official website: https://lexmachina.com
7. Blue J Legal case studies: https://www.bluejlegal.com/case-studies
8. ROSS Intelligence: https://www.rossintelligence.com
9. Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21.
10. Surden, H. (2014). Machine Learning and Law. Washington Law Review, 89(1), 87–115.
11. Surden, H. (2019). Artificial Intelligence and Law: An Overview. Annual Review of Law and Social Science, 15, 363–380.
12. Susskind, R. (2019). Tomorrow's Lawyers: An Introduction to Your Future. Oxford University Press.
13. R. Susskind, D. Susskind (2015). The Future of the Professions. Oxford University Press.
14. EU Predictive Justice Project (2021). Improving Judicial Decision-Making through Predictive Analytics. European Union Research Reports.