SUN’IY INTELLEKT ASOSIDA HUJJAT TAHLIL QILISH: ZAMONAVIY YONDASHUVLAR

Authors

  • Gulimoh Abdullayevna Abduraxmonova Author

Keywords:

sun’iy intellekt ( SI), hujjat tahlili, hujjatni tasniflash, NLP, hujjatni ajratib olish, avtomatlashtirish, document AI, tilni qayta ishlash.

Abstract

Sun’iy neyron tarmoqlar hujjatlarni tahlil qilish va tanib olishda keng qoʻllanilgan. Aksariyat sa’y-harakatlar alohida yozilgan va bosma belgilarni tanib olishga qaratilgan boʻlib, bunda sezilarli muvaffaqiyatlarga erishilgan. Biroq, hujjatlarni qayta ishlashning boshqa ko‘plab vazifalari, masalan, oldindan qayta ishlash (preprocessing), sahifa tuzilishini tahlil qilish (layout analysis), belgilarni ajratish (character segmentation), so‘zlarni tanib olish (word recognition) va imzoning haqiqiyligini tekshirish (signature verification) kabi masalalar ham istiqbolli natijalar bilan samarali hal etilgan. Maqolada sun’iy intellekt asosida hujjatlarni avtomatlashtirilgan tarzda tahlil qilish, strukturalangan va strukturasiz matnli hujjatlar — ustida SI yondashuvlari qo‘llanilishi, metodologik jihatlari, zamonaviy platformalar va amaliy natijalari tahlil qilinadi.

References

1. Chakrabarti, D., Patodia, N., Bhattacharya, U., Mitra, I., Roy, S., Mandi, J., Roy, N., & Nandy, P. (2018, October). Use of artificial intelligence to analyse risk in legal documents for a better decision support. In Proceedings of the TENCON—IEEE Region 10 Conference (pp. 683–688). IEEE. https://doi.org/10.1109/TENCON.2018.8650382.

2. Clausner, C., Antonacopoulos, A., & Pletschacher, S. (2020, March). Efficient and effective OCR engine training. International Journal on Document Analysis and Recognition, 23(1), 73–88. https://doi.org/10.1007/s10032-019-00347-8.

3. Erickson, J. (2025, July 31). Artificial intelligence-based document analysis: Modern approaches. Addepto. https://www.addepto.com/blog/how-ai-is-revolutionizing-document-analysis-a-comprehensive-guide.

4. Global Market Insights. (2024). Intelligent document processing (IDP) market size report, 2024–2034. https://www.gminsights.com/industry-analysis/intelligent-document-processing-market.

5. Jones, M. T. (2025). A beginner’s guide to natural language processing: Discover how natural language processing can help you to converse more naturally with computers. IBM Developer. https://developer.ibm.com/articles/a-beginners-guide-to-natural-language-processing/.

6. Mahadevkar, S. V., Patil, S., Kotecha, K., Lim, W. S., & Choudhury, T. (2024). Exploring AI-driven approaches for unstructured document analysis and future horizons. Journal of Big Data, 11(92). https://doi.org/10.1186/s40537-024-00948-z.

7. Precedence Research. (2024). Artificial intelligence (AI) market size, growth and forecast 2024–2034. https://www.precedenceresearch.com/artificial-intelligence-market.

8. Singh, P., Varadarajan, S., Singh, A. N., & Srivastava, M. M. (2020). Multi-domain document layout understanding using few-shot object detection. In Image Analysis and Recognition (Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, and Lecture Notes in Bioinformatics, Vol. 12132, pp. 89–99). Springer.

9. Zaman, G., Mahdin, H., & Hussain, K. (2020, June). Information extraction from semi and unstructured data sources: A systematic literature review. ICIC Express Letters, 14(6), 593–603. https://doi.org/10.24507/icicel.14.06.593

Downloads

Published

2025-11-04