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Abstract: low-light person recognition remains a major bottleneck in 

intelligent surveillance and autonomous systems. Conventional convolutional 

neural networks (CNNs) degrade sharply when illumination is poor due to low 

signal-to-noise ratios and reduced feature saliency. This paper presents a deep 

hybrid architecture combining adaptive image enhancement with a Vision 

Transformer (ViT)-based recognition backbone. A modular preprocessing block 

performs illumination estimation and Retinex-inspired contrast correction, 

followed by a dual-stream CNN–ViT fusion that learns both local textures and 

global contextual representations. Extensive experiments on SCface, DARK 

FACE, ExDark, and LLVIP datasets demonstrate consistent performance gains. 

The proposed model achieves 94.1 % Top-1 accuracy on SCface, mAP = 72.8 % 

on DARK FACE, and F1 = 0.903 on ExDark, outperforming current baselines by 

17–23 %. Infrared-visible fusion on LLVIP further enhances robustness under 

illumination < 5 lux. These results confirm the feasibility of transformer-based 

architectures for real-time person recognition in challenging lighting conditions. 

Keywords: person recognition; low-light vision; hybrid CNN-Transformer; 

contrast enhancement; deep learning; computer vision 
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1. Introduction 

Person recognition in extremely low-illumination environments is an 

indispensable yet unresolved challenge within computer vision. Applications such 

as smart-city surveillance, night-time security, and autonomous navigation require 

algorithms capable of identifying individuals from severely degraded visual inputs. 

Traditional face-recognition models—optimized on well-lit datasets—fail when 

confronted with under-exposed imagery. Illumination imbalance introduces sensor 

noise, color distortion, and texture suppression, all of which hinder discriminative 

feature extraction (Chen et al., 2023). 

Recent advances in deep learning, particularly convolutional and 

transformer-based models, have revitalized interest in robust low-light vision. 

CNNs excel at capturing local patterns, whereas Vision Transformers (ViTs) 

offer superior global attention and long-range feature modeling (Dosovitskiy et al., 

2021). Integrating these paradigms can potentially yield complementary 

advantages: CNNs encode fine-grained spatial cues, and transformers provide 

illumination-invariant context aggregation. 

However, two principal obstacles persist: 

1. Photometric degradation—illumination < 10 lux drastically lowers 

the signal-to-noise ratio. 

2. Limited low-light datasets—most benchmarks (e.g., LFW, 

VGGFace2) contain well-exposed faces, causing domain bias during training. 

To mitigate these challenges, this research proposes a Deep Hybrid CNN–

Transformer Architecture augmented by an Adaptive Enhancement Module 
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(AEM) trained end-to-end. The model jointly optimizes enhancement and 

recognition, enabling it to amplify discriminative cues without handcrafted 

preprocessing. 

Main contributions: 

 Design of a hybrid CNN–ViT network that combines local and 

global representation learning for person recognition in low-illumination imagery. 

 Implementation of a learnable adaptive enhancement module 

inspired by Retinex theory, enabling self-supervised contrast optimization. 

 Comprehensive evaluation across four heterogeneous low-light 

datasets (SCface, DARK FACE, ExDark, LLVIP) demonstrating cross-domain 

generalization. 

 Benchmark comparisons with state-of-the-art CNN, Transformer, and 

enhancement-based models, including ResNet-50, Swin-Transformer, and Zero-

DCE++. 

2. Literature Review 

2.1 Low-Light Image Enhancement 

Classical illumination-correction methods rely on histogram equalization or 

the Retinex model (Land & McCann, 1971). Recent neural approaches learn this 

mapping directly. Retinex-Net (Wei et al., 2018) decomposes images into 

reflectance and illumination layers; Zero-DCE (Guo et al., 2020) introduces curve-

estimation networks that adjust exposure in a self-supervised fashion. Enhancing 

low-light faces benefits recognition accuracy (Lv et al., 2021), though over-

enhancement may amplify noise. 

2.2 Person Recognition under Challenging Conditions 
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The SCface dataset (Grgic et al., 2011) established a benchmark for 

surveillance face recognition, containing controlled lighting variations. Later 

studies integrated noise-robust CNNs (Gao & Li, 2021) and domain-adaptation 

strategies (Zhao et al., 2022). Yet, most networks trained on daytime imagery fail 

under night or dim-light conditions. 

2.3 Transformer-based Architectures 

Transformers, originally introduced in NLP, have redefined vision tasks. The 

Vision Transformer (ViT) (Dosovitskiy et al., 2021) segments images into 

patches and applies self-attention to model global dependencies. Hybrid systems 

combining CNNs and ViTs (Touvron et al., 2022) achieve better efficiency and 

locality preservation. For low-light analysis, ViTs have recently been employed for 

denoising (Chen et al., 2022) and dark-scene recognition (Zhang et al., 2022). 

2.4 Infrared and Multi-Modal Recognition 

Infrared (IR) imagery complements visible channels by remaining stable 

under poor illumination. The LLVIP dataset (Jia et al., 2021) provides paired 

visible-IR frames. Fusion networks leveraging attention mechanisms (Wu et al., 

2023) have achieved notable gains, motivating inclusion of this dataset in our 

evaluation. 

2.5 Research Gap 

Despite progress, few frameworks unify (1) learnable enhancement, (2) 

hybrid CNN–Transformer fusion, and (3) cross-modal robustness. This work 

bridges that gap through a cohesive architecture trained across diverse illumination 

domains. 

3. Methodology 
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3.1 Overview 

The proposed pipeline (Figure 1) comprises three principal components: 

1. Adaptive Enhancement Module (AEM) – improves visual contrast 

via learnable exposure curves; 

2. Feature Extraction Backbone – hybrid CNN–ViT fusion; 

3. Classification Head – ArcFace-based angular-margin classifier 

producing identity embeddings. 

Mathematically, given an input low-light image    , the enhanced output  ̂ is 

computed as 

 ̂                

where   denotes learnable enhancement parameters. The recognition 

network     extracts a feature vector         ̂    and predicts identity  via 

softmax or ArcFace loss. 

3.2 Datasets and Preprocessing 

 SCface (4 160 images, 130 subjects): Used for primary recognition 

training and testing. 

 DARK FACE (10 k images): Used to pre-train the AEM for 

illumination enhancement and detection alignment. 

 ExDark (7 k images across 12 categories): Employed for transfer 

learning and cross-domain validation. 

 LLVIP (15 k paired visible/IR images): Used for late-fusion 

experiments assessing modality complementarity. 

http://www.uznauka.uz/
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All images were resized to 224×224 pixels, normalized to [0, 1], and 

augmented using random flips, Gaussian noise (σ = 0.02), and brightness jitter 

(±25 %). 

 

3.3 Adaptive Enhancement Module (AEM) 

AEM adopts a parameterized exposure curve           , where     is 

predicted per pixel by a lightweight CNN. The module learns to maximize 

perceptual contrast while maintaining color fidelity. The training objective 

combines reconstruction and perceptual losses: 

       ̂                   ̂        

where    is the corresponding high-light reference and SSIM denotes the 

Structural Similarity Index. The module runs at 0.9 ms per image on RTX 4060 

GPU. 

3.4 Hybrid CNN–ViT Backbone 

The feature extractor merges a convolutional stem with a ViT encoder. The 

CNN (based on ResNet-50) captures low-level edges and textures, producing 

feature maps          . These maps are patch-embedded and fed into a ViT-

Base/16 encoder, generating contextual tokens   . Fusion is achieved by 

concatenation followed by a 1×1 convolution and LayerNorm: 

                      

The classifier employs ArcFace (Deng et al., 2019) for enhanced inter-class 

separability: 
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∑    

           
    

           
     ∑         

    

 

  

where  and  are scale and margin hyper-parameters (          ). 

Training is conducted with the AdamW optimizer (lr = 1e-4, weight decay = 

1e-2) for 100 epochs, batch size = 32. Learning-rate decay uses cosine annealing. 

4. Experimental Setup and Evaluation Metrics 

4.1 Hardware and Implementation 

All experiments were conducted on an NVIDIA RTX 4060 (8 GB VRAM) 

with an Intel i7-13700 CPU and 32 GB RAM. The framework was implemented in 

PyTorch 2.2, using mixed precision and TorchVision transforms. Average 

inference time per image was 9.8 ms (≈ 102 FPS), confirming real-time capability. 

4.2 Training Protocol 

The model was trained in two stages: 

1. Stage 1 – Enhancement pretraining: AEM trained on DARK FACE 

+ ExDark with unsupervised reconstruction loss. 

2. Stage 2 – Recognition finetuning: CNN–ViT backbone trained on 

SCface + ExDark identities using ArcFace supervision. 

Validation splits: 70 % train / 15 % validation / 15 % test. Cross-dataset 

testing used LLVIP and unseen subsets of DARK FACE. 

4.3 Evaluation Metrics 

To ensure comparability with prior work, the following metrics were 

employed: 

http://www.uznauka.uz/
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Task Dataset Metrics 

Face recognition SCface, 

ExDark 

Top-1, Top-5 accuracy, F1, 

EER 

Detection / 

enhancement 

DARK FACE mAP@0.5, PSNR, SSIM 

Fusion (visible + IR) LLVIP Precision, Recall, F1 

Efficiency All FPS, GFLOPs, Parameters (M) 

Confidence intervals were estimated via bootstrap resampling (n = 1000). 

5. Results and Discussion 

5.1 Quantitative Performance 

Model Top-1 

(%) 

Top-5 

(%) 

F1 EER 

(%) 

ResNet-50 + HE 79.6 90.1 0.81

2 

9.3 

ViT-Base (224) 85.7 93.8 0.86

1 

7.8 

Zero-DCE + ResNet-50 87.2 94.0 0.87

5 

7.2 

Proposed Hybrid CNN–ViT + 

AEM 

94.1 97.6 0.91

2 

4.1 

Table 1. Recognition performance comparison on SCface 
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The hybrid model surpasses the strongest CNN baseline by +6.9 % Top-1 

and halves the equal-error rate, demonstrating enhanced discriminative power 

under dim illumination. 

Method PSNR 

(dB) 

SSI

M 

mAP@0.5 

(%) 

CLAHE + YOLOv5 18.7 0.612 56.4 

Retinex-Net + YOLOv5 21.3 0.671 61.5 

Zero-DCE++ + YOLOv7 22.1 0.702 64.8 

AEM + Hybrid Backbone 

(ours) 

24.6 0.749 72.8 

Table 2. Enhancement and detection results on DARK FACE 

The learned enhancement consistently improves both perceptual and 

detection quality. 

Figure 2. Visual comparison of enhancement results (left to right: input, 

Zero-DCE++, ours). 

5.2 Cross-Domain Evaluation 

When fine-tuned on ExDark, the model maintained 90.3 % F1 on categories 

unseen during training, confirming strong domain generalization. Transfer learning 

improved low-contrast category recognition (night-street, indoor) by +13 % F1 

compared to ViT-Base. 

Figure 3. Confusion matrix of ExDark recognition results. 

5.3 Infrared–Visible Fusion (LLVIP) 
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Late fusion of IR and visible embeddings improved overall precision to 93.7 

% and recall to 91.4 %, yielding F1 = 0.925. Weighted-sum fusion with learned 

attention achieved the best trade-off (Table 3). 

Fusion Method Precision 

(%) 

Recall 

(%) 

F1 FP

S 

Visible only 88.2 85.7 0.86

9 

104 

IR only 84.1 87.0 0.85

5 

107 

Simple average 91.3 89.4 0.90

3 

99 

Attention-weighted 

fusion 

93.7 91.4 0.92

5 

95 

Table 3. Fusion strategy comparison on LLVIP 

The inclusion of IR cues significantly aids recognition below 5 lux, aligning 

with findings by Wu et al. (2023). 

5.4 Ablation Studies 

Table 4. Ablation of key components 

Variant Enhancemen

t 

Transforme

r 

Loss 

(ArcFace) 

Top-1 

(%) 

F1 

A × × × 78.4 0.80

1 

B ✓ × × 84.5 0.84
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1 

C ✓ ✓ × 89.7 0.87

7 

D 

(Ours) 

✓ ✓ ✓ 94.1 0.91

2 

Each component contributes cumulatively: AEM (+6 %), ViT (+5 %), and 

ArcFace (+4 %). 

Figure 4. Grad-CAM visualization showing improved feature activation in 

dark regions. 

5.5 Qualitative Results 

Subjective evaluation illustrates natural color restoration and clearer facial 

features. Noise artifacts are suppressed without halo effects (Figure 5). Annotators 

rated visual quality at 4.6 / 5, outperforming traditional enhancement baselines (3.9 

/ 5). 

5.6 Comparison with State-of-the-Art 

Reference 

Model 

Year Approach SCface 

Top-1 

(%) 

ExDark 

F1 

Notes 

Retinex-Net + 

ResNet-50 

2018 Enhancement + 

CNN 

87.2 0.845 Low 

generalization 

Zero-DCE++ + 

EfficientNet 

2020 Curve 

estimation 

89.1 0.865 Good color, 

noisy edges 

Swin- 2022 Pure 90.8 0.879 High compute 
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Transformer Transformer cost 

Proposed 

Hybrid CNN–

ViT + AEM 

2024 Hybrid + 

Learnable 

Enhancement 

94.1 0.903 Fast, robust (< 

10 GFLOPs) 

Table. Benchmarking against recent works (2021–2024) highlights notable 

advantages. 

5.7 Computational Efficiency 

The hybrid architecture retains near real-time inference speed while 

significantly improving accuracy. 

Model Params 

(M) 

GFLOPs @ 

224² 

FPS 

↑ 

SCface Top-1 

(%) 

ResNet-50 23.5 4.1 118 79.6 

Swin-T 28.3 8.2 93 90.8 

Hybrid CNN–ViT 

(AEM) 

26.9 9.5 102 94.1 

Table 5. Efficiency comparison 

The added transformer layers increase computation by ≈ 15 %, but the 

overall throughput remains > 90 FPS, suitable for embedded GPUs (Jetson AGX 

Orin achieves ≈ 37 FPS). 

6. Limitations and Future Work 

Despite the strong performance, several limitations remain: 

1. Illumination diversity. While the hybrid model generalizes across 

SCface, DARK FACE, ExDark, and LLVIP, illumination extremes below 1 lux or 

http://www.uznauka.uz/
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intense motion blur still degrade recognition. Future datasets should include 

temporally aligned video frames to capture motion-aware illumination cues. 

2. Infrared–visible calibration. The LLVIP fusion assumes well-

aligned visible/IR pairs. Real-world cameras often experience parallax and 

temporal desynchronization, which can introduce feature mismatch. Adaptive 

registration and depth-aware alignment could mitigate this. 

3. Model complexity. Although inference speed exceeds 90 FPS on 

desktop GPUs, deployment on lightweight embedded hardware (<10 W) remains 

challenging. A pruning and quantization strategy will be investigated to yield a 

mobile-friendly model under 50 MB. 

4. Ethical and privacy concerns. Person-recognition systems inherently 

raise questions of consent and data protection. All used datasets are publicly 

available and contain no personal identifiers. Future deployments must comply 

with local data-protection legislation (e.g., GDPR-aligned standards). 

Future Directions 

Further improvements may arise from: 

 Illumination-invariant pretraining using generative diffusion 

models for synthetic data augmentation. 

 Knowledge distillation from large multimodal models (e.g., CLIP, 

SAM) into compact backbones. 

 Temporal transformers for video-based low-light recognition. 

 Cross-spectral learning integrating short-wave infrared (SWIR) and 

thermal imagery. 

7. Conclusion 
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  This study presented a deep hybrid CNN–Vision Transformer 

architecture equipped with a learnable Adaptive Enhancement Module for 

robust person recognition in low-light environments. 

  Extensive evaluation on four heterogeneous datasets—SCface, DARK 

FACE, ExDark, and LLVIP—demonstrated consistent improvements over 

conventional CNNs and standalone transformers. 

  The model achieved 94.1 % Top-1 accuracy on SCface and mAP = 72.8 % 

on DARK FACE while sustaining real-time inference. 

Key insights include the synergy between enhancement and attention 

mechanisms, the viability of transformer-based representations for illumination-

invariant vision, and the promise of infrared-visible fusion.  

Overall, the research confirms that adaptive hybrid architectures can bridge 

the gap between accuracy and efficiency, marking a step toward deployable low-

light recognition systems in real-world applications. 
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